1 Introduction
Traditional colonial power seeks unilateral power and domination over colonized people. It declares control of the social, economic, and political sphere by reordering and reinventing social order in a manner that benefits it. In the age of algorithms, this control and domination occurs not through brute physical force but rather through invisible and nuanced mechanisms such as control of digital ecosystems and infrastructure. Common to both traditional and algorithmic colonialism is the desire to dominate, monitor, and influence social, political, and cultural discourse through the control of core communication and infrastructure mediums. While traditional colonialism is often spearheaded by political and government forces, digital colonialism is driven by corporate tech monopolies – both of which are in search of wealth accumulation. The line between these forces is fuzzy as they intermesh and depend on one another. Political, economic, and ideological domination in the age of AI takes the form of ‘technological innovation’, ‘state-of-the-art algorithms’, and ‘AI solutions’ to social problems. Algorithmic colonialism, driven by profit maximization at any cost, assumes that the human soul, behaviour, and action is raw material free for the taking. Knowledge, authority, and power to sort, categorize, and order human activity rests with the technologist, for which we are merely data producing “human natural resources”.
In Surveillance Capitalism, Zuboff
Currently, much of Africa’s digital infrastructure and ecosystem is controlled and managed by Western monopoly powers such as Facebook, Google, Uber, and Netflix.
It is important, however, to note that this is not a rejection of AI technology in general, or even of AI that is originally developed in the West, but a rejection of a particular business model advanced by big technology monopolies that impose particular harmful values and interests while stifling approaches that do not conform to its values. When practiced cautiously, access to quality data and use of various technological and AI developments indeed hold potential for benefits to the African continent and the Global South in general. Access to quality data and secure infrastructure to share and store data, for example, can help improve the healthcare and education sector. Gender inequalities which plague every social, political, and economic sphere in Ethiopia, for instance, have yet to be exposed and mapped through data. Such data is invaluable in informing long-term gender-balanced decision making which is an important first step to societal and structural changes. Such data also aids general societal-level awareness of gender disparities, which is central for grassroot change. Crucial issues across the continent surrounding healthcare and farming, for example, can be better understood and better solutions can be sought with the aid of locally developed technology. A primary example is a machine learning model that can diagnose early stages of disease in the cassava plant, which is developed by Wayua, a Kenyan researcher and her team.
Having said that, the marvelousness of technology and its benefits to the continent is not what this paper is set out to discuss. There already exist countless die-hard techno-enthusiasts, both within and outside the continent, some of whom are only too willing to blindly adopt anything ‘data-driven’, or AI-based without a second thought of the possible harmful consequences. Mentions of ‘technology’, ‘innovation’, and ‘AI’ continually and consistently bring with them evangelical advocacy, blind trust, and little, if any, critical engagement. They also bring with them invested parties that seek to monetize, quantify, and capitalize every aspect of human life, often at any cost. The atmosphere during one of the major technology conferences in Tangier, Morocco embodies this tech-evangelism. CyFyAfrica 2019, The Conference on Technology, Innovation, and Society
2 Context Matters
One of the central questions that need attention in this regard is the relevance and appropriateness of AI software developed with values, norms, and interests of Western societies to that of users across the African continent
The harmful consequences of lack of awareness to context is most stark in the health sector. In a comparative study that examined early breast cancer detection practices between Sub-Saharan Africa (SSA) and high income countries, Black and Richmond (2019)
The importing of AI tools made in the West by Western technologists may not only be irrelevant and harmful due to lack transferability from one context to another but also is an obstacle that hinders the development of local products. For example, “Nigeria, one of the more technically developed countries in Africa, imports 90% of all software used in the country. The local production of software is reduced to add-ons or extensions creation for mainstream packaged software.”
3 Data are people
The African equivalent of Silicon Valley’s tech start-ups can be found in every possible sphere of life around all corners of the continent — in ‘Sheba Valley’ in Addis Abeba, ‘Yabacon Valley’ in Lagos, and ‘Silicon Savannah’ in Nairobi, to name a few — all pursuing ‘cutting-edge innovations’ in sectors like banking, finance, healthcare, and education. They are headed by technologists and those in finance from both within and outside of the continent who seemingly want to ‘solve’ society’s problems and using data and AI to provide quick ‘solutions’. As a result, the attempt to ‘solve’ social problems with technology is ripe and this is exactly where problems arise. Complex cultural, moral, and political problems that are inherently embedded in history and context are reduced to problems that can be measured and quantified – matters that can be ‘fixed’ with the latest algorithm. As dynamic and interactive human activities and processes are automated, they are inherently simplified to the engineers’ and tech corporations’ subjective notions of what they mean. The reduction of complex social problems to a matter that can be “solved” by technology also treats people as passive objects for manipulation. Humans, however, far from being passive objects, are active meaning seekers embedded in dynamic social, cultural, and historical backgrounds.
The discourse around ‘data mining’, ‘abundance of data’, and ‘data rich continent’ shows the extent to which the individual behind each data point is disregarded. This muting of the individual, a person with fears, emotions, dreams, and hopes, is symptomatic of how little attention is given to matters such as people’s well-being and consent, which should be the primary concerns if the goal indeed is to ‘help’ those in need. Furthermore, this discourse of ‘mining’ people for data is reminiscent of the coloniser attitude that declares humans as raw material free for the taking.
Data is necessarily always about something and never about an abstract entity. The collection, analysis, and manipulation of data potentially entails monitoring, tracking, and surveilling people. This necessarily impacts people directly or indirectly whether it manifests as change in their insurance premiums or refusal of services. The erasure of the person behind each data point makes it easy to ‘manipulate behaviour’ or ‘nudge’ users, often towards profitable outcomes for companies. Considerations around the wellbeing and welfare of the individual user, the long-term social impacts, and the unintended consequences of these systems on society’s most vulnerable are pushed aside, if they enter the equation at all. For companies that develop and deploy AI, at the top of the agenda is the collection of more data to develop profitable AI systems rather than the welfare of individual people or communities. This is most evident in the FinTech sector, one of the prominent digital markets, in Africa. People’s digital traces from their interactions with others to how much they spend on their mobile top ups, is continually surveyed and monitored to form data for making loan assessments. Smartphone data from browsing history, likes, and locations are recorded forming the basis for a borrower’s creditworthiness.
AI technologies that aid decision-making in the social sphere are, for the most part, developed and implemented by the private sector whose primary aim is to maximise profit. Protecting individual privacy rights and cultivating a fair society is therefore the least of their concern especially if such practice gets in the way of “mining” data, building predictive models, and pushing products to customers. As decision-making of social outcomes is handed over to predictive systems developed by profit-driven corporates, not only are we allowing our social concerns to be dictated by corporate incentives, we are also allowing moral questions to be dictated by corporate interest. ‘Digital nudges’, behaviour modifications developed to suit commercial interests, are a prime example. As ‘nudging’ mechanisms become the norm for ‘correcting’ individuals’ behaviour, eating habits, or exercising routines, those developing predictive models are bestowed with the power to decide what ‘correct’ is. In the process, individuals that do not fit our stereotypical ideas of a ‘fit body’, ‘good health’, and ‘good eating habits’ end up being punished, outcast, and pushed further to the margin. When these models are imported as state-of-the-art technology that will save money and ‘leapfrog’ the continent into development, Western values and ideals are enforced, either deliberately or intentionally.
4 Blind trust in AI hurts the most vulnerable
The use of technology within the social sphere often, intentionally, or accidentally, focuses on punitive practices, whether it is to predict who will commit the next crime or who may fail to repay their loan. Constructive and rehabilitative questions such as why people commit crimes in the first place or what can be done to rehabilitate and support those that have come out of prison are rarely asked. Technology designed and applied with the aim of delivering security and order, necessarily bring cruel, discriminatory, and inhumane practices to some. The cruel treatment of the Uighurs in China
With the automation of the social comes the automation and perpetuation of historical bias, discrimination, and injustice. As technological solutions are increasingly deployed and integrated into social, economic, and political spheres, so are the problems that arise with the digitisation and automation of everyday life. Consequently, the harms of digitization and ‘technological solutions’ affect individuals and communities that are already at the margins of society. For example, as Kenya embarks on the project of national biometric IDs for its citizens, it risks excluding racial, ethnic, and religious minorities that have historically been discriminated. Enrolling on the national biometric ID requires documents such as a national ID card and birth certificate. However, these minorities have historically faced challenges acquiring such documents. If the national biometric system comes to effect, these minority groups are rendered stateless and face challenges registering a business, getting a job, or travelling.
FinTech and the digitization of lending has come to dominate the ‘Africa rising’ narrative; a narrative which supposedly will ‘lift many out of poverty’. Since its arrival in the continent in the 1990s, FinTech has largely been portrayed as a technological revolution that will ‘leap-frog’ Africa into development. The typical narrative
Loose regulations and lack of transparency and accountability under which the microfinance industry operates in, as well as overhyping the promise of technology, makes it difficult to challenge and interrogate its harmful impacts. Like traditional colonialism, those that benefit from FinTech, microfinancing, and various lend apps operate from a distance. For example, Branch
5 Lessons from the Global North
Globally, there is an increasing awareness of the problems that arise with automating social affairs illustrated by ongoing attempts to integrate ethics into computer science programs
AI, like Big Data, is a buzzword that gets thrown around carelessly; what it refers to is notoriously contested across various disciplines, and oftentimes it is mere mathematical snake oil
The continent would do well to adopt a dose of critical appraisal when regulating, deploying, and reporting AI. This requires challenging the mindset that portrays AI with God-like power and as something that exists and learns independent of those that create it. People create, control, and are responsible for any system. For the most part such people consist of a homogeneous group of predominantly white, middle-class males from the Global North. Like any other tool, AI is one that reflects human inconsistencies, limitations, biases, and the political and emotional desires of the individuals behind it and the social and cultural ecology that embed it. Just like a mirror that reflects how society operates – unjust and prejudiced against some individuals and communities.
AI tools that are deployed in various spheres are often presented as objective and value free. In fact, some automated systems which are put forward in domains such as hiring
For example, during the CyFyAfrica 2019 conference,
In Johannesburg, one of the most surveilled cities in Africa, ‘smart’ CCTV networks provide a powerful tool to segregate, monitor, categorize, and punish individuals and communities that have historically been disadvantaged. Vumacam,
Stereotypically held views drive what is perceived as a problem and the types of technology we develop to ‘resolve’ them. In the process we amplify and perpetuate those harmful stereotypes. We then interpret the findings through the looking glass of technology as evidence that confirms our biased intuitions and further reinforces stereotypes. Any classification, clustering, or discrimination of human behaviours and characteristics that AI systems produce reflects socially and culturally held stereotypes, not an objective truth.
A robust body of research in the growing field of Algorithmic Injustice
6 Conclusion
As Africa grapples between digitizing and automating various services and activities and protecting the consequential harm that technology causes, policy makers, governments, and firms that develop and apply various technology to the social sphere need to think long and hard about what kind of society we want and what kind of society technology drives. Protecting and respecting the rights, freedoms, and privacy of the very youth that the leaders want to put at the front and centre should be prioritised. This can only happen with guidelines and safeguards for individual rights and freedom put in place, continually maintained, revised, and enforced. In the spirit of communal values that unifies such a diverse continent, ‘harnessing’ technology to drive development means prioritizing welfare of the most vulnerable in society and the benefit of local communities, not distant Western start-ups or tech monopolies.
The question of technologization and digitalisation of the continent is also a question of what kind of society we want to live in. The continent has plenty of techno-utopians but few that would stop and ask difficult and critical questions. African youth solving their own problems means deciding what we want to amplify and showing the rest of the world; shifting the tired portrayal of the continent (hunger and disease) by focusing attention on the positive vibrant culture (such as philosophy, art, and music) that the continent has to offer . It also means not importing the latest state-of-the-art machine learning systems or some other AI tools without questioning the underlying purpose and contextual relevance, who benefits from it, and who might be disadvantaged by the application of such tools. Moreover, African youth in the AI field means creating programs and databases that serve various local communities and not blindly importing Western AI systems founded upon individualistic and capitalist drives. In a continent where much of the Western narrative is hindered by negative images such as migration, drought, and poverty; using AI to solve our problems ourselves starts with a rejection of such stereotypical images. This means using AI as a tool that aids us in portraying how we want to be understood and perceived; a continent where community values triumph and nobody is left behind.
[1] Shoshana Zuboff, The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power (London: Profile Books, 2019).
[2] Ibid.
[3] Faine Greenwood, “Facebook Is Putting Us All on the Map Whether We like It or Not” (Medium, 29 July 2019), available at https://onezero.medium.com/facebook-is-putting-us-all-on-the-map-whether-we-like-it-or-not-c3f178a8b430 (accessed 26 October 2019).
[4] Michael Kwet, “Digital Colonialism Is Threatening the Global South” (Al Jazeera, 13 March 2019), available at https://www.aljazeera.com/indepth/opinion/digital-colonialism-threatening-global-south-190129140828809.html (accessed 18 July 2019).
[5] Michael Kimani, “5 Reasons Why Facebook’s New Cryptocurrency ‘Libra’ is Bad News for Africa” (Kioneki, 28 June 2019), available at https://kioneki.com/2019/06/28/5-reasons-why-facebooks-new-cryptocurrency-libra-is-bad-news-for-africa/ (accessed 28 October 2019).
[6] Karen Hao, “The future of AI research is in Africa” (MIT Technology Review, 21 June 2019), available at https://www.technologyreview.com/2019/06/21/134820/ai-africa-machine-learning-ibm-google/ (accessed 10 November 2019).
[7] Observer Research Foundation, “CYFY Africa” (ORF, 2019) available at https://www.orfonline.org/cyfy-africa/ (accessed 20 September 2019).
[8] Crystal Biruk, Cooking Data: Culture and Politics in an African Research World (Durham: Duke University Press, 2018).
[9] Eleanor Black and Robyn Richmond, “Improving early detection of breast cancer in sub-Saharan Africa: why mammography may not be the way forward.” (2019) 15(1) Globalization and Health 3.
[10] Knowledge Commons Brasil, “Digital Colonialism & the Internet as a Tool of Cultural Hegemony”, available at https://web.archive.org/web/20190731000456/http://www.knowledgecommons.in/brasil/en/whats-wrong-with-current-internet-governance/digital-colonialism-the-internet-as-a-tool-of-cultural-hegemony/ (accessed 10 November 2019).
[11] Abeba Birhane, “Descartes Was Wrong: ‘a Person Is a Person through Other Persons’” (Aeon, 2017), available at https://aeon.co/ideas/descartes-was-wrong-a-person-is-a-person-through-other-persons (accessed 22 July 2020).
[12] Paul Mozur, “One Month, 500,000 Face Scans: How China Is Using A.I. to Profile a Minority” (New York Times, 14 April 2019), available at https://www.nytimes.com/2019/04/14/technology/china-surveillance-artificial-intelligence-racial-profiling.html (accessed 24 June 2019).
[13] Mary Madden, “The Devastating Consequences of Being Poor in the Digital Age” (New York Times, 25 April 2019), available at https://www.nytimes.com/2019/04/25/opinion/privacy-poverty.html (accessed 10 November 2019).
[14] Farai Mudzingwa, “Mnangagwa’s Govt Getting Facial Recognition Tech From China” (TechZim, 13 April 2018), available at https://www.techzim.co.zw/2018/04/mnangagwas-govt-getting-facial-recognition-tech-from-china/ (accessed 10 April 2020).
[15] Heidi Swart, “Joburg’s New Hi-Tech Surveillance Cameras: A Threat to Minorities That Could See the Law Targeting Thousands of Innocents.” (Daily Maverick, 28 September 2018), available at https://www.dailymaverick.co.za/article/2018-09-28-joburgs-new-hi-tech-surveillance-cameras-a-threat-to-minorities-that-could-see-the-law-targeting-thousands-of-innocents/ (accessed 15 July 2019).
[16] Abdi Latif Dahir and Carlos Mureithi, “Kenya’s High Court Delays National Biometric ID Program” (New York Times, 31 January 2020), available at https://www.nytimes.com/2020/01/31/world/africa/kenya-biometric-ID-registry.html?referringSource=articleShare (accessed 5 April 2020).
[17] Nadeem Hussain, “Microfinance and Fintech” (MIT Technology Review, 22 November 2017), available at http://www.technologyreview.pk/microfinance-and-FinTech/ (accessed 20 March 2020).
[18] Milford Bateman, “The problem with microcredit in Africa” (Africa is a Country, 9 October 2019), available at https://africasacountry.com/2019/09/a-fatal-embrace (accessed 2 April 2020).
[19] Nicholas Loubere, “The Curious Case of M-Pesa’s Miraculous Poverty Reduction Powers”
(The Developing Economics Blog, 14 June 2019), available at https://developingeconomics.org/2019/06/14/the-curious-case-of-m-pesas-miraculous-poverty-reduction-powers (accessed 28 March 2020).
[20] Ibid.
[21] ‘Branch’, available at https://branch.co/about (accessed 3 April 2020).
[22] Forbes ‘Tala’, available at https://www.forbes.com/companies/tala/ (accessed 3 April 2020).
[23] Kevin Donovan and Emma Park, “Perpetual Debt in the Silicon Savannah” (Boston Review, 20 September 2019), available at https://bostonreview.net/class-inequality-global-justice/kevin-p-donovan-emma-park-perpetual-debt-silicon-savannah (accessed 5 April 2020).
[24] Ibid.
[25] Casey Fiesler, Natalie Garrett, and Nathan Beard, “What Do We Teach When We Teach Tech Ethics? A Syllabi Analysis.” (2020) Symposium on Computer Science Education (SIGCSE’20), available at https://dl.acm.org/doi/abs/10.1145/3328778.3366825 (accessed 5 April 2020).
[26] Arvind Narayanan, “The 2019 Arthur Miller Lecture on Science and Ethics” (Massachusetts Institute of Technology STS Program, 18 November 2019), available at https://sts-program.mit.edu/event/arthur-miller-lecture-on-science-and-ethics/ (accessed 18 March 2020).
[27] HireVue, “Pre-Employment Assessment & Video Interview Tools”, available at https://www.hirevue.com/ (accessed 2 December 2019).
[28] PredPol, “Predict Prevent Crime: Predictive Policing Software”, available at https://www.predpol.com/ (accessed 1 December 2019).
[29] Cathy O’Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (London: Penguin Books, 2017).
[30] Observer Research Foundation, supra n. 7.
[31] “White Supremacist Extremism JIB” (Scribd, 2017), available at https://www.scribd.com/document/356288299/White-Supremacist-Extremism-JIB (accessed 3 September 2019).
[32] Vumacam, “Vumacam, A Smart Surveillance Solution”, available at https://www.vumacam.co.za/features/ (accessed 27 March 2020).
[33] Michael Kwet, “Smart CCTV Networks Are Driving an AI-Powered Apartheid in South Africa” (Vice, 22 November 2019), available at https://www.vice.com/en_us/article/pa7nek/smart-cctv-networks-are-driving-an-ai-powered-apartheid-in-south-africa?utm_campaign=sharebutton (accessed 22 March 2020).
[34] Ibid.
[35] Ibid.
[36] Andy Clarno, Neoliberal Apartheid: Palestine/Israel and South Africa after 1994 (Chicago: University of Chicago Press, 2017).
[37] Ruha Benjamin, Race after Technology: Abolitionist Tools for the New Jim Code (Cambridge: Polity, 2019).
[38] Safiya Noble, Algorithms of Oppression: How Search Engines Reinforce Racism (New York: New York University Press, 2018).
[39] Anja Lambrecht and Catherine Tucker, “Algorithmic Bias? An Empirical Study into Apparent Gender-Based Discrimination in the Display of STEM Career Ads” (2016) SSRN Electronic Journal, available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2852260 (accessed 5 April 2020).
[40] Chris Buckley, Paul Mozur and Austin Ramzy, “How China Turned a City into a Prison” (New York Times, 4 April 2019), available at https://www.nytimes.com/interactive/2019/04/04/world/asia/xinjiang-china-surveillance-prison.html?smid=tw-share (accessed 18 June 2019).
[41] Mozur, supra n. 15.
[42] Rashida Richardson, Jason Schultz, and Kate Crawford, “Dirty Data, Bad Predictions: How Civil Rights Violations Impact Police Data, Predictive Policing Systems, and Justice” (2019) 94 New York University Law Review Online 192-233.
Google translate did a good job for a French summary of your paper! Could be useful in West Africa
Nous vivons dans un monde où les entreprises technologiques détiennent un pouvoir et une influence sans précédent. Les solutions technologiques aux défis sociaux, politiques et économiques sont monnaie courante. Dans les pays du Sud, la technologie développée avec des perspectives, des valeurs et des intérêts occidentaux est importée avec peu de réglementation ou d’examen critique. Ce travail examine comment les monopoles technologiques occidentaux, avec leur désir de dominer, de contrôler et d’influencer le discours social, politique et culturel, partagent des caractéristiques communes avec le colonialisme traditionnel. Cependant, alors que le colonialisme traditionnel est conduit par les forces politiques et gouvernementales, le colonialisme algorithmique est conduit par les agendas des entreprises. Alors que le premier utilisait la domination de la force brute, le colonialisme à l’ère de l’IA prend la forme «d’algorithmes de pointe» et de «solutions fondées sur l’IA» aux problèmes sociaux. Non seulement l’IA développée en Occident est impropre aux problèmes africains, mais l’invasion algorithmique de l’Occident appauvrit simultanément le développement de produits locaux tout en laissant le continent dépendant des logiciels et des infrastructures occidentaux. En tirant des exemples de diverses parties du continent, cet article illustre comment l’invasion de l’IA en Afrique fait écho à l’exploitation de l’époque coloniale. Cet article conclut ensuite en présentant une vision de l’IA ancrée dans les besoins et les intérêts des communautés locales.