Computer Science > Human-Computer Interaction
[Submitted on 16 Mar 2023]
Title:Lessons Learnt from a Multimodal Learning Analytics Deployment In-the-wild
View PDFAbstract:Multimodal Learning Analytics (MMLA) innovations make use of rapidly evolving sensing and artificial intelligence algorithms to collect rich data about learning activities that unfold in physical learning spaces. The analysis of these data is opening exciting new avenues for both studying and supporting learning. Yet, practical and logistical challenges commonly appear while deploying MMLA innovations "in-the-wild". These can span from technical issues related to enhancing the learning space with sensing capabilities, to the increased complexity of teachers' tasks and informed consent. These practicalities have been rarely discussed. This paper addresses this gap by presenting a set of lessons learnt from a 2-year human-centred MMLA in-the-wild study conducted with 399 students and 17 educators. The lessons learnt were synthesised into topics related to i) technological/physical aspects of the deployment; ii) multimodal data and interfaces; iii) the design process; iv) participation, ethics and privacy; and v) the sustainability of the deployment.
Submission history
From: Vanessa Echeverria [view email][v1] Thu, 16 Mar 2023 06:05:24 UTC (31,346 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.